
On a group-theoretic approach to the supersingular
locus of Shimura varieties

Ryosuke Shimada

Abstract

In this paper, we give a review of a group-theoretic approach to the su-
persingular (or basic) locus of Shimura varieties via affine Deligne-Lusztig
varieties. Görtz-He-Nie proved that the supersingular locus of fully Hodge-
Newton decomposable Shimura varieties admits a simple description. Re-
cently, new simple descriptions have been discovered beyond fully Hodge-
Newton decomposable cases. After explaining the work by Görtz-He-Nie, we
will introduce these new cases including the Siegel case of genus 3 or 4, which
is based on a joint work with Teppei Takamatsu.

1 Introduction

Shimura varieties have been used, with great success, towards applications in number
theory. There are many such applications based on the study of integral models and
their reductions. It is known that in some cases, the supersingular locus of the
reduction of a Shimura variety admits a simple description. For example, Vollaard-
Wedhorn [47] described the supersingular locus of the Shimura variety of GU(1, n−1)
at an inert prime as a union of (classical) Deligne-Lusztig varieties. Also in the
GU(2, 2)-case, Howard-Pappas [25] proved the existence of a similar description.
After [47] and [25], Görtz, He and Nie classified the cases where the supersingular
locus is naturally a union of Deligne-Lusztig varieties, called the fully Hodge-Newton
decomposable cases (cf. [13], [15], [16]). The studies by Görtz, He and Nie are based
on the fact that the study of the perfection of the supersingular locus can be reduced
to a study of an affine Deligne-Lusztig variety via the Rapoport-Zink uniformization.

Recently, new simple descriptions have been discovered in some cases which are
not fully Hodge-Newton decomposable. For example, the case of GU(2, n − 2) at
an inert prime and the Siegel case of genus 3 or 4 are such cases. In this paper, we
summarize the results of these new cases, explaining a group-theoretic approach via
affine Deligne-Lusztig varieties. Before this, we also give a review of the works by
Görtz, He and Nie.
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2 Preliminaries

From now on, we sometimes drop the adjective “perfect” for notational convenience.

2.1 Notation

Let F be a non-archimedean local field with finite residue field Fq of prime charac-
teristic p, and let L be the completion of the maximal unramified extension of F .
Let σ denote the Frobenius automorphism of L/F . Further, we write O (resp. OF )
for the valuation ring of L (resp. F ). Finally, we denote by ϖ a uniformizer of F
and by vL the valuation of L such that vL(ϖ) = 1.

Let G be an unramified connected reductive group over OF . Let B ⊂ G be
a Borel subgroup and T ⊂ B a maximal torus in B, both defined over OF . For a
cocharacter µ ∈ X∗(T ), letϖ

µ be the image ofϖ ∈ Gm(F ) under the homomorphism
µ : Gm → T .

Let Φ = Φ(G, T ) denote the set of roots of T in G. We denote by Φ+ (resp. Φ−)
the set of positive (resp. negative) roots distinguished by B. Let ∆ be the set of
simple roots and ∆∨ be the corresponding set of simple coroots. Let X∗(T ) be the
set of cocharacters, and let X∗(T )+ be the set of dominant cocharacters.

The Iwahori-Weyl group W̃ = W̃G is defined as the quotient NG(L)T (L)/T (O).
This can be identified with the semi-direct product W0 ⋉ X∗(T ), where W0 is the
finite Weyl group of G. We denote the projection W̃ → W0 by p. We have a length
function ℓ : W̃ → Z≥0 given as

ℓ(uϖλ) =
∑

α∈Φ+,uα∈Φ−

|〈α, λ〉+ 1|+
∑

α∈Φ+,uα∈Φ+

|〈α, λ〉|,

where u ∈ W0 and λ ∈ X∗(T ).
Let S ⊂ W0 denote the subset of simple reflections, and let S̃ ⊂ W̃ denote the

subset of simple affine reflections. We often identify ∆ and S. The affine Weyl group
Wa is the subgroup of W̃ generated by S̃. Then we can write the Iwahori-Weyl group
as a semi-direct product W̃ = Wa ⋊ Ω, where Ω ⊂ W̃ is the subgroup of length 0
elements. Moreover, (Wa, S̃) is a Coxeter system. We extend the Bruhat order ≤
on Wa to W̃ in the usual way: for w,w′ ∈ Wa, τ, τ

′ ∈ Ω, wτ ≤ w′τ ′ if and only if
w ≤ w′ and τ = τ ′. For any J ⊆ S̃, let JW̃ (resp. W̃ J) be the set of minimal length
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elements for the cosets in WJ\W̃ (resp. W̃/WJ), where WJ denotes the subgroup of
W̃ generated by J . We write JW̃ J ′

for JW̃ ∩ W̃ J ′
.

For w ∈ Wa, we denote by supp(w) ⊆ S̃ the set of simple affine reflections
occurring in every (equivalently, some) reduced expression of w. Note that τ ∈ Ω
acts on S̃ by conjugation. We define the σ-support suppσ(wτ) of wτ as the smallest
τσ-stable subset of S̃ which contains supp(w). We call an element wτ ∈ Waτ a
σ-Coxeter element if exactly one simple reflection from each τσ-orbit on suppσ(wτ)
occurs in every (equivalently, any) reduced expression of w.

For α ∈ Φ, let Uα ⊆ G denote the corresponding root subgroup. We set

I = T (O)
∏

α∈Φ+

Uα(ϖO)
∏
β∈Φ−

Uβ(O) ⊆ G(L),

which is called the standard Iwahori subgroup associated to the triple T ⊂ B ⊂
G. For J ⊂ S̃ with WJ finite, let PJ ⊇ I be the standard parahoric subgroup
corresponding to J . We denote by πJ the projection G(L)/I → G(L)/PJ . Set
K = PS = G(O) and π = πS.

Example 2.1. In the case G = GLn, we will use the following description. Let T
be the torus of diagonal matrices, and we choose the subgroup of upper triangu-
lar matrices B as Borel subgroup. Let χij be the character T → Gm defined by
diag(t1, t2, . . . , tn) 7→ titj

−1. Then we have Φ = {χij | i 6= j}, Φ+ = {χij | i < j},
Φ− = {χij | i > j} and ∆ = {χi,i+1 | 1 ≤ i < n}. Through the isomorphism
X∗(T ) ∼= Zn, X∗(T )+ can be identified with the set {(m1, · · · ,mn) ∈ Zn | m1 ≥
· · · ≥ mn}. Let us write s1 = (1 2), s2 = (2 3), . . . , sn−1 = (n − 1 n). Set
s0 = ϖχ∨

1,n(1 n), where χ1,n is the unique highest root. Then S = {s1, s2, . . . , sn−1}
and S̃ = S ∪ {s0}. The Iwahori subgroup I ⊂ K is the inverse image of Bop

under the projection G(O) → G(Fq) sending ϖ to 0, where Bop is the subgroup
of lower triangular matrices. Similarly, if J ⊂ S, then PJ is the inverse image of
the standard parabolic subgroup (which contains Bop) corresponding to J . Finally,

ϖ(1,0(n−1))s1s2 · · · sn−1 is a generator of Ω ∼= Z.

Example 2.2. Let us denote by GSp2n ⊂ GL2n the group of symplectic simili-
tudes of dimension 2n as in [18, §2.3]. In the case G = GSp2n, we will use the
following description. Let T (resp. B) be the intersection of the torus (resp. Borel
subgroup) of GL2n as in Example 2.1 with GSp2n. See [19, §8] for the descrip-
tion of the corresponding roots. In particular, ∆ = {1

2
χi,i+1 +

1
2
χ2n−i,2n−i+1 | 1 ≤

i ≤ n − 1} t {χn,n+1}. The cocharacter group X∗(T ) can be identified with the
set {(m1, · · · ,m2n) ∈ Z2n | m1 + m2n = m2 + m2n−1 = · · · = mn + mn+1}. Set
s1 = (1 2)(2n−1 2n), s2 = (2 3)(2n−2 2n−1), . . . , sn−1 = (n−1 n)(n+1 n+2), sn =
(n n + 1). Then S = {s1, s2, . . . , sn} and the finite Weyl group is the subgroup of
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the symmetric group of degree 2n generated by S. Set s0 = ϖχ∨
1,2n(1 2n). Then

S̃ = S ∪ {s0}. The standard Iwahori subgroup is the intersection of the standard
Iwahori subgroup of GL2n as in Example 2.1 with GSp2n. Similarly, if J ⊂ S, then
PJ is the inverse image of the standard parabolic subgroup corresponding to J .

2.2 Affine Deligne-Lusztig Varieties

For w ∈ W̃ and b ∈ G(L), the affine Deligne-Lusztig variety Xw(b) in the affine flag
variety G(L)/I is defined as

Xw(b) = {xI ∈ G(L)/I | x−1bσ(x) ∈ IwI}.

The admissible subset of W̃ associated to µ is defined as

Adm(µ) = {w ∈ W̃ | w ≤ ϖuµ for some u ∈ W0}.

We fix a rational level structure, i.e., a subset J ⊂ S̃ such that WJ is finite and
J = σ(J). The closed affine Deligne-Lusztig variety in G(L)/PJ is the closed reduced
Fq-subscheme defined as

X(µ, b)J = {gPJ ∈ G(L)/PJ | g−1bσ(g) ∈ PJ Adm(µ)PJ}.

In the equal characteristic case, affine Deligne-Lusztig varieties are schemes,
locally of finite type over Fq. In the mixed characteristic case, affine Deligne-Lusztig
varieties are perfect schemes, locally perfectly of finite type over Fq. See [35], [49],
[1] and [20, Lemma 1.1]. Left multiplication by g−1 ∈ G(L) induces an isomorphism
between affine Deligne-Lusztig varieties corresponding to b and g−1bσ(g). Thus
the isomorphism class of the affine Deligne-Lusztig variety only depends on the σ-
conjugacy class of b. Also, the affine Deligne-Lusztig varieties carry a natural action
(by left multiplication) by the σ-centralizer of b

Jb = {g ∈ G(L) | g−1bσ(g) = b}.

Note that Jb ∼= Jg−1bσ(g) by sending j to g−1jg.

Set JAdm(µ) = Adm(µ) ∩ JW̃ . As explained in [17, §2.5], we have

X(µ, b)J =
⊔

w∈JAdm(µ)

πJ(Xw(b)).

This is the EKOR (Ekedahl-Kottwitz-Oort-Rapoport) stratification, which is the local
analogue of the stratification defined in the global context of Shimura varieties in
[22]. If (G,µ) arises from a Shimura datum, an EKOR stratum in X(µ, b)J actually
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corresponds to the intersection of a global Ekedahl-Oort stratum with the Newton
stratum attached to the σ-conjugacy class [b]. If J = ∅ (resp. J = S), then we speak
of the KR stratification (resp. the EO stratification) instead.

Set J(w, σ) = max{J ′ ⊆ J | Ad(w)σ(J ′) = J ′}. It follows from [15, Proposition
5.7] that if Wsuppσ(w) is finite, then Wsuppσ(w)∪J(w,σ) is also finite. Since any two
lifts of τ ∈ Ω are T (O)-conjugate by [11, Lemma 2.5], we will write Xw(τ) instead
of Xw(τ̇). The following proposition is a combination of [13, Proposition 4.1.1 &
Theorem 4.1.2] (see also [16, §2.4]).

Proposition 2.3. Let τ ∈ Ω. Let w ∈ JW̃ ∩ Waτ such that Wsuppσ(w) is finite.
Then the projection induces πJ(Xw(τ)) ∼= πJ(w,σ)(Xw(τ)) and

πJ(w,σ)(Xw(τ)) =
⊔

j∈Jτ/Jτ∩Psuppσ(w)∪J(w,σ)

jπJ(w,σ)(Y (w)),

where

πJ(w,σ)(Y (w)) = {gPJ(w,σ) ∈ Psuppσ(w)∪J(w,σ)/PJ(w,σ) | g−1τσ(g) ∈ PJ(w,σ)wPσ(J(w,σ))}

is (the perfection of) a Deligne-Lusztig variety in the flag variety Psuppσ(w)∪J(w,σ)/PJ(w,σ).
In particular, if J = ∅, then

Xw(τ) =
⊔

j∈Jτ/Jτ∩Psuppσ(w)

jY (w),

where Y (w) = {gI ∈ Psuppσ(w)/I | g−1τσ(g) ∈ IwI} is a Deligne-Lusztig variety in
the flag variety Psuppσ(w)/I.

The varieties πJ(w,σ)(Y (w)) and πJ(w,σ)(Xw(τ)) are sometimes called fine Deligne-
Lusztig varieties and fine affine Deligne-Lusztig varieties respectively. See [13, §3.4].

Remark 2.4. Let w ∈ JW̃ . Then w ∈ J(w,σ)W̃ σ(J(w,σ)). By [13, Theorem 3.2.1], we
have

PJ(w,σ)wPσ(J(w,σ)) = PJ(w,σ) ·σ IwI,

where ·σ denotes the σ-twisted conjugation action of G(L).

Remark 2.5. Each Y (w) or πJ(w,σ)(Y (w)) is irreducible and of dimension ℓ(w). See
[9] and [3]. Clearly, each jY (w) or jπJ(w,σ)(Y (w)) is closed in Xw(τ) or πJ(Xw(τ)),
and hence an irreducible component.

Remark 2.6. In fact, the global EKOR stratum attached to w ∈ JAdm(µ) is
contained in the basic locus of Shimura varieties if and only if Wsuppσ(w) is finite.
See [48, Proposition 4.2].
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2.3 Deligne-Lusztig Reduction Method

The following Deligne-Lusztig reduction method was established in [12, Corollary
2.5.3] (A1 and Gm actually mean A1,pfn and Gpfn

m respectively in the mixed charac-
teristic case).

Proposition 2.7. Let w ∈ W̃ and let s ∈ S̃ be a simple affine reflection. Then the
following two statements hold for any b ∈ G(L).

(i) If ℓ(swσ(s)) = ℓ(w), then there exists a Jb-equivariant universal homeomor-
phism Xw(b) → Xswσ(s)(b).

(ii) If ℓ(swσ(s)) = ℓ(w) − 2, then there exists a decomposition Xw(b) = X1 tX2

such that

• X1 is open and there exists a Jb-equivariant morphism X1 → Xsw(b),
which is the composition of a Zariski-locally trivial Gm-bundle and a
universal homeomorphism.

• X2 is closed and there exists a Jb-equivariant morphism X2 → Xswσ(s)(b),
which is the composition of a Zariski-locally trivial A1-bundle and a uni-
versal homeomorphism.

Let gI ∈ Xw(b). If ℓ(sw) < ℓ(w) (we can reduce to this case by exchanging w and
swσ(s)), then let g1I denote the unique element inG(L)/I such that g−1g1 ∈ IsI and
g−1
1 bσ(g) ∈ IswI. The set X1 (resp. X2) above consists of the elements gI ∈ Xw(b)
satisfying g−1

1 bσ(g1) ∈ IswI (resp. Iswσ(s)I). All of the maps in the proposition
are given as the map sending gI to g1I.

Remark 2.8. The perfection of a universal homeomorphism is an isomorphism.

2.4 Length Positive Elements

We denote by δ+ the indicator function of the set of positive roots, i.e.,

δ+ : Φ → {0, 1}, α 7→

{
1 (α ∈ Φ+)

0 (α ∈ Φ−).

Note that any element w ∈ W̃ can be written in a unique way as w = xϖµy
with µ dominant, x, y ∈ W0 such that ϖµy ∈ SW̃ . We have p(w) = xy and
ℓ(w) = ℓ(x) + 〈µ, 2ρ〉 − ℓ(y). We define the set of length positive elements by

LP(w) = {v ∈ W0 | 〈vα, y−1µ〉+ δ+(vα)− δ+(xyvα) ≥ 0 for all α ∈ Φ+}.
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Then we always have y−1 ∈ LP(w). Indeed, y is uniquely determined by the con-
dition that 〈α, µ〉 ≥ δ+(−y−1α) for all α ∈ Φ+. Since δ+(α) + δ+(−α) = 1, we
have

〈y−1α, y−1µ〉+ δ+(y−1α)− δ+(xα) = 〈α, µ〉 − δ+(−y−1α) + δ+(−xα) ≥ 0.

Thanks to Kottwitz [30], a σ-conjugacy class [b] of b ∈ G(L) is uniquely de-
termined by two invariants: the Kottwitz point κ(b) ∈ π1(G)/((1 − σ)π1(G)) and
the Newton point νb ∈ X∗(T )Q,+. Clearly, Xw(b) = ∅ if κ(b) 6= κ(ẇ). We say
that b ∈ G(L) is basic if νb is central. The following theorem is a refinement of
the non-emptiness criterion in [14], which is conjectured by Lim [31] and proved by
Schremmer [37, Proposition 5]. See also the remark right after [38, Definition 3.3].

Theorem 2.9. Assume that the Dynkin diagram of G is σ-connected, i.e., σ acts
transitively on the set of irreducible components of Φ. Let b ∈ G(L) be a basic ele-
ment with κ(b) = κ(ẇ). Then Xw(b) = ∅ if and only if the following two conditions
are satisfied:

(i) |Wsuppσ(w)| is infinite.

(ii) There exists v ∈ LP(w) such that suppσ(σ
−1(v)−1p(w)v) ⊊ S.

2.5 The J-stratification
Let J be the fixed level structure in §2.2. The map w 7→ ẇ induces a bijection

WJ\W̃/WJ
∼−→ PJ\G(L)/PJ .

If J = ∅, then this is the usual Iwahori-Bruhat decomposition. If J = S, it is the
Cartan decomposition. We denote by invJ the relative position map

invJ : G(L)×G(L) → WJ\W̃/WJ , (g, h) 7→ PJg
−1hPJ .

We will simply write inv for inv∅. By definition, two elements gK, hK ∈ G(L)/PJ

lie in the same Jb-stratum if and only if for all j ∈ Jb, invJ(j, g) = invJ(j, h). By
[11, Theorem 2.10], the Jb-strata are locally closed in G(L)/PJ . By intersecting each
Jb-stratum with X(µ, b)J , we obtain the Jb-stratification of it. This stratification is
first introduced by Chen-Viehmann [7] in the hyperspecial level S. Görtz generalized
it to any parahoric level in [11].

As explained in [7, Remark 2.1], the Jb-stratification heavily depends on the
choice of b in its σ-conjugacy class. Thus we need to fix a specific representative
to compare the Jb-stratification on X(µ, b)J to another stratification. As explained
in [11, Remark 3.3], a reasonable choice is the unique length 0 element τ = τµ
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such that X(µ, τ)J 6= ∅. Equivalently, τ is the image of ϖµ under the projection
W̃ = Wa ⋊ Ω → Ω. Note that for any w ∈ W̃ , the Jẇ-stratification is independent
of the choice of lift ẇ in G(L) (cf. [11, Lemma 2.5]). In the sequel, we will mainly
focus on the case b = τ and simply write J instead of Jτ̇ .

3 Fully Hodge-Newton decomposable cases

We now fix µ ∈ X∗(T )+. Let τ be as in §2.5.

3.1 Fully Hodge-Newton decomposable pairs

For α ∈ ∆, we define ωα to be the rational fundamental weight such that

〈ωα, β
∨〉 =

{
1 (β = α)

0 (β ∈ ∆ \ {α}).

For each σ-orbit O of ∆, we set

ωO =
∑
α∈O

ωα.

For a dominant cocharacter µ ∈ X∗(T ), we define

depth(G,µ) := max
O⊆∆

〈ωO , µ〉,

where O runs through all σ-orbits of S.
See [15, Definition 3.1] for the definition of fully Hodge-Newton decomposable

pairs (G,µ). Set JAdm(µ) ̸=∅ = {w ∈ JAdm(µ) | Xw(τ) 6= ∅}. We first recall the
following characterization proved in [15, Theorem B].

Theorem 3.1. The pair (G,µ) is fully Hodge-Newton decomposable if and only if
the following equivalent conditions are satisfied:

(i) The cocharacter µ is minute, which means by definition that depth(G,µ) ≤ 1.

(ii) Wsuppσ(w) is finite for every w ∈ JAdm(µ)̸=∅.

In particular, the validity of the condition (ii) is independent of the rational level J .

We say that the triple (G,µ, J) is of Coxeter type if (G,µ) is fully Hodge-Newton
decomposable and every w ∈ JAdm(µ)̸=∅ is a σ-Coxeter element. Unlike the fully
Hodge-Newton decomposability, the validity of Coxeter type depends on the para-
horic level. See [16, Theorem 1.4] for the classification.
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Example 3.2. The fully Hodge-Newton decomposable cases contain the following
cases which have been investigated in the context of Shimura varieties (cf. [13, §5.3]):

• The Siegel case of genus 2, which has been studied by Katsura-Oort [28] and
Kaiser [27].

• The GU(1, n− 1), p split case, which has been studied by Harris-Taylor [21].

• The GU(1, n− 1), p inert case, which has been studied by Vollaard-Wedhorn
[47].

• The GU(2, 2), p inert case, which has been studied by Howard-Pappas [25].

All of these cases concern the hyperspecial level S, and are of Coxeter type.

Example 3.3. The pair (SLn, χ
∨
1,n) is fully Hodge-Newton decomposable, but does

not come from a Shimura variety. If J = S, then (SLn, χ
∨
1,n, J) is of Coxeter type.

On the other hand, it is not of Coxeter type if J ⊊ S.

3.2 The Bruhat-Tits stratification

In the fully Hodge-Newton decomposable cases, we have the following simple de-
scription of X(µ, τ)J .

Theorem 3.4. If (G,µ) is fully Hodge-Newton decomposable, then X(µ, τ)J is
naturally a disjoint union of Deligne-Lusztig varieties.

Proof. This is a combination of Proposition 2.3 and Theorem 3.1. See also [15,
§5.11].

The disjoint decomposition in Theorem 3.4 is called the weak Bruhat-Tits strat-
ification. This is a stratification in the strong sense that the closure of a stratum is
a union of strata. Let j, j′ ∈ J = Jτ̇ . The closure of a stratum jπJ(Y (w)) contains
a stratum j′πJ(Y (w′)) if and only if the following two conditions are both satisfied:

(i) w ≥J,σ w′, which means by definition that there exists u ∈ WJ such that
w ≥ u−1w′u.

(ii) j(J ∩ Psuppσ(w)∪J(w,σ)) ∩ j′(J ∩ Psuppσ(w
′)∪J(w′,σ)) 6= ∅.

By [23, §4.7], ≥J,σ gives a partial order on JW̃ . Let B(J, F ) denote the rational
Bruhat-Tits building of J. Then (2) above is equivalent to requiring that κ(j) = κ(j′)
and that the simplices in B(J, F ) corresponding to j(J ∩ Pw)j

−1 and j′(J ∩ Pw′)j′−1

are neighbors (i.e., there exists an alcove which contains both of them). See [16,
§2.4] for these facts.
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If (G,µ, J) is of Coxeter type, then the weak Bruhat-Tits stratification satisfies
further nice properties (cf. [16, Proposition 2.8 & Corollary 2.9]). So this stratifica-
tion is called the Bruhat-Tits stratification in this case. In [7, §4], Chen-Viehmann
conjectured that the Bruhat-Tits stratification coincides with the J-stratification
and verified this conjecture in the Siegel case of genus 2 and the Vollaard-Wedhorn
case. In [11], Görtz proved this conjecture in general:

Theorem 3.5. Let (G,µ, J) be of Coxeter type. Then the Bruhat-Tits stratification
on X(µ, b)J coincides with the J-stratification.

Remark 3.6. The J-stratification is a stratification in the loose sense that in general,
the closure of a stratum is not a union of strata. See [7, §2.1].

The following proposition is essential for the proof of Theorem 3.5.

Proposition 3.7. Let Y (w) be as in Proposition 2.3, and let w0 be the longest
element in Wsuppσ(w). If w is a σ-Coxeter element, then Y (w) ⊆ Iw0I/I.

Proof. See [32, Corollary 2.5] or [11, Proposition 1.1].

The fact that the Bruhat-Tits stratification is finer than the J-stratification easily
follows from Proposition 3.7 as follows (cf. [11, §3.3]): Set J0 = {j ∈ J | κ(j) = 0}.
It is easy to check that inv(j, g) = inv(j, g′) for all j ∈ J if this is true for J0. We fix
j ∈ J0. Let w ∈ W̃ with Wsuppσ(w) finite. Then by [11, Proposition 1.7], there exists
gI ∈ Psuppσ(w)/I with g ∈ J ∩ Psuppσ(w) such that inv(j, y) = inv(j, g)inv(g, y) for
any y ∈ Psuppσ(w)/I. In particular, if y ∈ Y (w) and w is a σ-Coxeter element, then
inv(j, y) = inv(j, g)w0 by Proposition 3.7. So inv(j, y) is independent of y ∈ Y (w).
Thus the value inv(j,−) (and hence invJ(j,−)) is constant on each Bruhat-Tits
stratum.

The converse is more difficult and relies on combinatorial arguments on the affine
root system and the building of G.

Example 3.8. In the case (SL3, χ
∨
1,3, ∅) (cf. Example 3.3), the weak Bruhat-Tits

stratification does not coincide with the J-straitification. Indeed, we have ϖχ∨
1,3 =

s0s1s2s1 and hence s1s2, s2s1 ∈ Adm(µ) (see [2, Theorem 2.2.2] for example). The
above argument shows that both Y (s1s2) and Y (s2s1) are contained in the same
J-stratum because suppσ(s1s2) = suppσ(s2s1) = {s1, s2}.

4 A generalization of Coxeter type

In this section, we will treat the cases of positive Coxeter type, which can be con-
sidered as a generalization of Coxeter type.
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4.1 Elements with positive Coxeter part

We say that w ∈ W̃ has positive Coxeter part if σ−1(v)−1p(w)v is a σ-Coxeter
element for some v ∈ LP(w). Affine Deligne-Lusztig varieties associated to elements
of positive Coxeter type were studied in a joint work [38] with Schremmer and Yu.
The following theorem is a combination of [38, Theorem 5.7 & Theorem 5.20].

Theorem 4.1. Assume that w ∈ W̃ has positive Coxeter part and Xw(b) 6= ∅.
Then Xw(b) has only one Jb-orbit of irreducible components, and each irreducible
component is an iterated fibration over a Deligne-Lusztig variety of Coxeter type
whose iterated fibers are either A1 or Gm. If b is basic, then all fibers are A1 and
each iterated fibration decomposes into the product of varieties.

An iterated fibration is the composite of some Zariski-locally trivial A1-bundles
(cf. [24, §2G]). If w has positive Coxeter part, we also have an explicit description
of the σ-conjugacy classes [b] such that Xw(b) 6= ∅, the dimension of Xw(b)(6= ∅)
and the number of fibers. One of the main ingredients of the proof is the Deligne-
Lusztig reduction method (Proposition 2.7), which induces the iterated fibration in
Theorem 4.1.

We say that w ∈ W̃ has finite Coxeter part if σ−1(v)−1p(w)v is a σ-Coxeter
element for v = y−1 ∈ LP(w) (cf. §2.4). Before [38], He-Nie-Yu [24] studied w ∈ W̃
with finite Coxeter part and proved the existence of the simple geometric structure
as Theorem 4.1. See [41] by the author for a special case of GLn.

Example 4.2. It follows from [26, Theorem 3.3] that if G = GL2, then

Xϖ(r,−r)s1(1)
∼= (P1 \ P1(Fq))× Ar−1.

More generally, it follows from [4, Theorem 6.17] that if G = GLn, then

Xϖ((n−1)r,−r,...,−r)s1s2···sn−1
(1) ∼=

⊔
G(F )/G(OF )

Drn−1
Fq

× A
n(n−1)r

2
−n+1,

where Drn−1
Fq

:= Pn−1
Fq

\
⋃

H∈H H and H = the set of all Fq-rational hyperplanes in

Pn−1
Fq

. This is called the Drinfeld upper half space over Fq of dimension n, which is
isomorphic to the Deligne-Lusztig variety associated to GLn and w = s1s2 · · · sn−1.

Note that ϖ((n−1)r,−r,...,−r)s1s2 · · · sn−1 has finite Coxeter part. So the above ex-
amples are special cases of Theorem 4.1.

4.2 The cases of positive Coxeter type

We say that (G,µ, J) is of positive Coxeter type if every w ∈ JAdm(µ)̸=∅ satisfies
one of the following conditions:
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(i) w is a σ-Coxeter element with Wsuppσ(w) finite.

(ii) w has positive Coxeter part.

Clearly, this notion is a generalization of Coxeter type. In the case where G = GLn

and J = S, we have the following classification. See [40, Theorem 3.3].

Theorem 4.3. The following assertions on µ are equivalent.

(i) The triple (GLn, µ, S) is of positive Coxeter type.

(ii) The cocharacter µ is central or one of the following forms modulo Zω∨
n :

ω∨
1 , ω∨

n−1, (n ≥ 1),

ω∨
1 + ω∨

n−1, ω∨
2 , 2ω∨

1 , ω∨
n−2, 2ω∨

n−1,

ω∨
2 + ω∨

n−1, 2ω∨
1 + ω∨

n−1, ω∨
1 + ω∨

n−2, ω∨
1 + 2ω∨

n−1, (n ≥ 3),

ω∨
3 , ω∨

n−3, (n = 6, 7, 8),

3ω∨
1 , 3ω∨

n−1, (n = 3, 4, 5),

ω∨
1 + ω∨

2 , ω∨
3 + ω∨

4 , (n = 5),

4ω∨
1 , ω∨

1 + 3ω∨
2 , 4ω∨

2 , 3ω∨
1 + ω∨

2 , (n = 3),

mω∨
1 with m ∈ Z>0, (n = 2).

Here ω∨
k denotes the cocharacter of the form (1, . . . , 1, 0, . . . , 0) in which 1 is repeated

k times.

According to [16, Theorem 1.4], (GLn, µ, S) is of Coxeter type if and only if the
cocharacter µ is central or one of the following forms modulo Zω∨

n :

ω∨
1 , ω∨

n−1 (n ≥ 1), ω∨
1 + ω∨

n−1 (n ≥ 2), ω∨
2 (n = 4).

The case µ = ω∨
1 + ω∨

n−1 corresponds to Example 3.3. The case µ = ω∨
2 was studied

by Fox [10]. Note that all of these cases are contained in the list of Theorem 4.3.
In the case where G = GSp2n, µ = ω∨

n = (1(n), 0(n)) and J = S, we have the
following proposition. See [16, Theorem 1.4] and [44, Proposition 3.1 & §5].

Proposition 4.4. Let n ≥ 2. The triple (GSp2n, ω
∨
n , S) is of positive Coxeter type

if and only if n = 2, 3.

According to [16, Theorem 1.4], the triple (GSp2n, ω
∨
n , S) is of Coxeter type if

and only if n = 2.
By Proposition 2.3, Theorem 2.9 and Theorem 4.1, we can expect a simple

geometric structure of X(µ, b)J if (G,µ, J) is of positive Coxeter type. This has
been verified in the above cases. See [40, Theorem 3.4] and [44, Theorem 3.4].
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Theorem 4.5. Assume that (G,µ, S) is one of the triples of positive Coxeter type
in Theorem 4.3 or Proposition 4.4. Then the variety X(µ, τ)S is naturally a dis-
joint union of subvarieties which are universally homeomorphic to the product of a
Deligne-Lusztig variety of Coxeter type and a finite-dimensional affine space. More-
over, this stratification coincides with the J-stratification.

The stratification in Theorem 4.5 satisfies the following conditions:

• For w ∈ SAdm(µ) ̸=∅, J acts transitively on the set of irreducible components
of Xw(τ).

• For w ∈ SAdm(µ)̸=∅, there exists a parahoric subgroup Pw ⊂ G(L) and an irre-
ducible component Y (w) of Xw(τ) such that π(Xw(τ)) =

⊔
j∈J/J∩Pw

jπ(Y (w)).

• Y (w) ∼= π(Y (w)) and each jπ(Y (w)) is a J-stratum of X(µ, τ)S .

In this case, we say that the closure relation can be described in terms of B(J, F ) if
the J-stratification of X(µ, τ)S is a stratification in the strong sense and jπ(Y (w)) ⊇
j′π(Y (w′)) is equivalent to the following condition:

There exist sequences w = w0 ≥S,σ w1 ≥S,σ · · · ≥S,σ wk = w′ in SAdm(µ)0 and
j = j0, j1 . . . , jk = j′ in J such that ji−1(J ∩ Pwi−1

) ∩ ji(J ∩ Pwi
) 6= ∅ for 1 ≤ i ≤ k.

Theorem 4.6. Assume that (G,µ, S) is one of the triples of positive Coxeter type
in Theorem 4.3 or Proposition 4.4. Assume moreover that µ is minuscule. Then the
closure relation of the stratification of X(µ, τ)S in Theorem 4.5 can be described in
terms of B(J, F ).

It seems natural to expect that the closure relation can be described in terms
of B(J, F ) in all of the cases in Theorem 4.3 including the non-minuscule cases.
If G = GLn or GSp2n and µ is minuscule, then J acts transitively on the set of
irreducible components of X(µ, τ)S. In general, this is not true for non-minuscule
cocharacters, which is a difficulty. See [34, Remark 0.3 & Theorem 0.5] for these
facts on irreducible components of X(µ, τ)S.

4.3 Comparison of the J-stratification and the Ekedahl-Oort
stratification

In view of Theorem 3.5, it would be interesting to study the relationship between the
J-stratification and the EKOR stratification. If J = S, then the EKOR stratification
is called the EO (Ekedahl-Oort) stratification.

In general, it is very difficult to study the J-stratification. However, in the case
where G = GLn, J = S and τ is superbasic, i.e., κ(ϖµ) ∈ Z is coprime to n,
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the J-stratification coincides with a stratification by semi-modules ([7, Proposition
3.4]). The notion of semi-modules was first considered by de Jong and Oort [8] for
minuscule cocharacters. Later Viehmann [45] introduced a notion of extended semi-
modules for arbitrary cocharacters, which generalizes the notion of semi-modules.
It played a crucial role to prove the dimension formula and the study of irreducible
components of X(µ, τ)S. This is because for these problems, we can reduce the
general case to the case that G = GLn and τ is superbasic. In the superbasic case,
we have the following characterization of the cases of positive Coxeter type.

Theorem 4.7. Let G = GLn and let µ ∈ X∗(T )+. Assume that τ is superbasic.
Then the following assertions are equivalent.

(i) (GLn, µ, S) is of positive Coxeter type.

(ii) The J-stratification of X(µ, τ)S gives a refinement of the Ekedahl-Oort strati-
fication.

Proof. See [39, Theorem A].

The main ingredient of the proof is the explicit construction of top-dimensional
J-strata (which corresponds to irreducible components) of X(µ, τ)S obtained in [43]
by the author. Although the result of [43] only concerns the superbasic case, we can
expect a generalization of it.

5 Beyond fully Hodge-Newton decomposable cases

5.1 Weakly fully Hodge-Newton decomposable cases

Recently, Chen-Tong [6] introduced the weak full Hodge-Newton decomposability
in the context of p-adic Hodge theory and studied it under the minuscule condition.
The weakly admissible locus F(G,µ, τ)wa inside the flag variety F(G,µ), attached to
G with a minuscule cocharacter µ, is a vast generalization of the Drinfeld upper half
plane. The admissible locus F(G,µ, τ)a ⊆ F(G,µ, τ)wa is a p-adic analogue of the
complex analytic period spaces. Chen-Fargues-Shen [5] proved that (G,µ) is fully
Hodge-Newton decomposable if and only if F(G,µ, τ)a = F(G,µ, τ)wa. If this is the
case, then the Newton stratification of F(G,µ) gives a refinement of the Harder-
Narashimhan stratification (see [6, §1.4.3] for these stratifications). The main result
of [6] states that the weak full Hodge-Newton decomposability, which is a general-
ization of the full Hodge-Newton decomposability by definition, is equivalent to the
condition that the Newton stratification is finer than the Harder-Narashimhan strat-
ification. They also classified the weakly fully Hodge-Newton decomposable cases.
Their classification (cf. [6, Remark 2.13]) tells us that for minuscule µ, (GLn, µ) is

14



weakly fully Hodge-Newton decomposable if and only if τ is superbasic or (GLn, µ, S)
is of positive Coxeter type (cf. Theorem 4.3). In [6, Remark 2.16], they pointed out
that it will be an interesting question to investigate the basic affine Deligne-Lusztig
varieties associated to a weakly fully Hodge-Newton decomposable pair. For the
superbasic case, the geometry of Xµ(τ) for GLn is already studied in [46] to some
extent. The answer to Chen-Tong’s question for cocharacters of positive Coxeter
type is contained in Theorem 4.5 and Theorem 4.6.

5.2 The cases where depth(G,µ) ≤ 2

Recall that (G,µ) is fully Hodge-Newton decomposable if and only if depth(G,µ) ≤
1. In this point of view, it is natural to think that we can measure the complex-
ity of affine Deligne-Lusztig varieties attached to (G,µ) by depth(G,µ). Recently,
Schremmer informed the author that there is an upcoming work by He, Schremmer
and Viehmann, which classifies the cases where depth(G,µ) < 2. According to their
classification, we have the following proposition in the case of GLn (which can also
be checked by explicit computation as in the examples below).

Proposition 5.1. Let G = GLn and let µ ∈ X∗(T )+. If depth(G,µ) < 2, then
(G,µ, S) is of positive Coxeter type. If n ≥ 6, then depth(G,µ) < 2 if and only if
(G,µ, S) is of positive Coxeter type.

Proposition 5.2. Let n ≥ 2. The triple (GSp2n, ω
∨
n , S) is of positive Coxeter type

if and only if depth(G,µ) < 2.

Example 5.3. Let G = GLn. Under the notation of Example 2.1, the rational
fundamental weights are

ω{χi,i+1} = (

i︷ ︸︸ ︷
n−i
n
, . . . , n−i

n
,

n−i︷ ︸︸ ︷
− i

n
, . . . ,− i

n
), 1 ≤ i ≤ n− 1.

Thus depth(GLn, ω
∨
1 ) =

n−1
n

< 1 and depth(GLn, ω
∨
2 ) =

2(n−2)
n

< 2. We also have

depth(GLn, ω
∨
3 ) =

3(n−3)
n

. Therefore depth(GLn, ω
∨
3 ) < 2 if and only if n < 9, which

is consistent with Theorem 4.3 and Proposition 5.1.
Let G be the unramified unitary group. Then W̃ ∼= W̃GLn . Under this identifi-

cation, we have σ((mi)1≤i≤n) = (−mn+1−i)1≤i≤n ∈ X∗(T ) ∼= Zn and σ(si) = sn−i ∈
W̃GLn by setting sn = s0. So the rational fundamental weights are

ω{χi,i+1,χn−i,n−i+1} = (

i︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0,

i︷ ︸︸ ︷
−1, . . . ,−1), 1 ≤ i ≤ bn

2
c.

Thus depth(G,ω∨
1 ) = 1. If n > 4, then depth(G,ω∨

2 ) = 2.
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Example 5.4. Let G = GSp2n. We follow the notation of Example 2.2. Note that
∆ = {χ∨

i,i+1 + χ∨
2n−i,2n−i+1 | 1 ≤ i ≤ n− 1} t {χ∨

n,n+1}. So the rational fundamental
weights are

ω{ 1
2
χi,i+1+

1
2
χ2n−i,2n−i+1} = (

i︷ ︸︸ ︷
1
2
, . . . , 1

2
, 0, . . . , 0,

i︷ ︸︸ ︷
−1

2
, . . . ,−1

2
), 1 ≤ i ≤ n− 1,

ω{χn,n+1} = (

n︷ ︸︸ ︷
1
2
, . . . , 1

2
,

n︷ ︸︸ ︷
−1

2
, . . . ,−1

2
).

Thus depth(GSp2n, ω
∨
n ) =

n
2
.

By Example 5.3 and Example 5.4, we have depth(G,µ) = 2 in the following
cases:

• G = GSp8 and µ = ω∨
4 (the Siegel case of genus 4).

• G = the unramified unitary group, µ = ω∨
2 and n > 4 (the GU(2, n − 2), p

inert case).

Interestingly, we also found a simple geometric structure in the these cases.

Theorem 5.5. Let (G,µ) be one of the above cases. Then the variety X(µ, τ)S
is naturally a disjoint union of subvarieties which are universally homeomorphic to
iterated fibrations over Deligne-Lusztig varieties. The index set of this stratification
can be described in terms of B(J, F ).

Proof. This is [44, Theorem 4.3] and [42, Theorem C].

In these cases, we cannot expect a nice closure relation such as the cases of
positive Coxeter type. Indeed, in the GU(2, 3)-case, there exists a stratum whose
closure is not a union of strata. See [42, Example 4.11].

6 Relationship to Shimura varieties

Assume that F = Qp. In this mixed characteristic case, affne Deligne-Lusztig va-
rieties are related to the reduction of certain Shimura varieties, or more directly to
moduli spaces of p-divisible groups. These moduli spaces are often called Rapoport-
Zink spaces. The relation relies on the Dieudonné theory, which classifies p-divisible
groups. A Dieudonné module a free module of finite rank over O(= W (Fq)) together
with a σ-linear operator F (Frobenius) and a σ−1-linear operator V (Verschiebung)
such that FV = VF = p.
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Fix a p-divisible group X over Fq. Let M be its Dieudonné module, and let
N = M⊗OL be its rational Dieudonné module. We fix a basis ofM overO and write
F as bσ, b ∈ GLn(L), where n = rkOM . Lattices inside N which are stable under F
and V correspond to quasi-isogenies X → X of p-divisible groups over Fq. A lattice
gM, g ∈ GLn(L) is stable under F andV if and only if p(gM) ⊆ F(gM) ⊆ gM . This
is also equivalent to saying g−1bσ(g) ∈ Kϖω∨

i K, where i = vL(det(b))(= κ(b) when
G = GLn). Therefore we can identify the set of Fq-valued points of the moduli
space of quasi-isogenies attached to X with the set of closed points of the affine
Deligne-Lusztig variety attached to GLn, ω

∨
i and b.

More generally, if (G,µ, b) arises from a Rapoport-Zink datum of Hodge type,
then M(G,µ, b)pfn

J,Fq

∼= X(µ, b)J , where M(G,µ, b)J,Fq
denotes the special fiber of

the corresponding Rapoport-Zink space. This is proved in [49, Proposition 0.4].
Although in [49] it was assumed that J = S, the same arguments work in any
parahoric level. See [15, §7.2] and [16, §5.3].

Similarly, one obtains a relationship to Shimura varieties, or more precisely to
the basic Newton strata in the special fiber of them. Indeed, by the uniformization
theorem by Rapoport-Zink [36] (see also [29] for the case of Shimura varieties of
Hodge type), basic Rapoport-Zink spaces are related in an explicit way to the basic
loci of Shimura varieties. Although the connection is more complicated for non-
basic [b] (cf. [33]), it is true in general that the global EKOR stratum associated to
w and the Newton stratum associated to [b] have non-empty intersection if and only
if Xw(b) 6= ∅. See [15, Lemma 7.6].
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